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c© Società Italiana di Fisica

Springer-Verlag 2000

CP violation in Λb → pπ− decay
R. Mohanta

Physics Department, Panjab University, Chandigarh–160014, India

Received: 15 February 2000 / Published online: 8 June 2000 – c© Springer-Verlag 2000

Abstract. Using the next-to-leading order QCD corrected effective Hamiltonian, scale and scheme inde-
pendent Wilson coefficients, we have estimated the branching ratio and CP violating asymmetries for the
Λb → pπ− decay mode in the Standard Model using the framework of generalized factorization. The effects
of nonfactorizable contributions are taken into account by treating the effective no. of colors (Neff

c ) as a
free parameter. The form factors are evaluated in the nonrelativistic quark model. The estimated branching
ratio is found to be O(10−6) which lies below the current experimental upper limit and the CP violating
asymmetries are acp ∼ −8% and A(α) ∼ 2 × 10−5.

1 Introduction

Despite many attempts CP violation still remains one of
the most outstanding problem in particle physics [1]. So
far it has been observed only within the neutral K me-
son system. Yet Kaon system by itself can not provide the
whole picture of CP violation. Consequently it is essential
to study CP violation outside this system which is impor-
tant in order to understand whether the standard model
provides a correct description of this phenomenon through
the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In this
respect the B-meson system appears to be most promis-
ing, which is also reflected by the tremendous experimen-
tal efforts at the present and future B factories. Studies
of CP violation in the B meson system [2] have suggested
that large CP-violating asymmetries should be observed
in the forthcoming experiments. The basic signal for CP
violation is the partial rate difference between a B decay
mode and its CP conjugate process. On the basis of CKM
picture, either B0 − B̄0 mixing or the absorptive part of
penguin amplitudes [3] can give rise to significant CP vio-
lation in exclusive nonleptonic B decays. Since charged B
mesons can not mix, a measurement of the CP violating
observable in these decays would be a clear sign of di-
rect CP violation. The existence of such CP asymmetries
require the interference of two decay amplitudes with dif-
ferent weak and strong phase differences. The weak phase
difference arises from the superposition of various pen-
guin contributions and the usual tree diagrams while the
strong phases are induced by final state interactions. It is
worth emphasizing that the above decay modes are flavor
self tagging processes which should be favored for exper-
imental reconstuctions. It is also interesting to study CP
violation in the bottom baryon system in order to find
the physical channels which may have large CP asymme-
tries, even though the branching ratios for such processes
are usually smaller than those for the corresponding pro-

cesses of bottom mesons. The study of CP violation in
the bottom system will be helpful for understanding the
origin of CP violation and may provide useful informa-
tion about the possible baryon asymmetry in our universe.
Measurement of decay width of Λb → ΛJ/ψ has been re-
ported recently [5] and one expects more data in future
in bottom baryon sector. In this paper we intend to study
CP violation in the nonleptonic Λb → pπ− decay in the
standard model. Like the search for CP violation in the
B± decays, the study of beauty baryon decay does not
need tagging processes of the associated beauty hadrons
produced in the same event. CP violation in strange hy-
peron decays is extensively studied in [6] within the stan-
dard model and beyond it. The weak phase differences in
these cases arise from the CKM matrix elements whereas
the stong phase differences are evaluated considering the
experimental data of Nπ phase shifts. However for the
Λb → pπ− decay mode the phase shifts are not known
experimentally and have to be determined theoretically.
The strong phases are generated by final state interac-
tions (FSI). At the quark level, the strong phase differ-
ences arise through the absorptive parts of perturbative
penguin diagrams (hard final state interactions) [3] and
nonperturbatively (soft final state interactions) [4]. In the
absence of an argument that parton-hadron duality should
hold in exclusive processes, one can not exclude that the
weak transition matrix elements receive phases originat-
ing from soft FSI. However the effects of soft FSI are ex-
tremely difficult to quantify. In the absence of a reliable
theoretical calculation for soft FSI, we make the usual ap-
proximation of retaining the absorptive part from quark
level calculation (hard FSI) for the strong phase difference
in our analysis.

Here we use the standard theoretical framework to
study the nonleptonic Λb → pπ− decay mode, which is
based on the effective Hamiltonian approach in conjuc-
tion with the factorization hypothesis for hadronic matrix



290 R. Mohanta: CP violation in Λb → pπ− decay

elements. The short distance QCD corrected Hamiltonian
is calculated next to leading order. The renormalization
scheme and scale problems with factorization approach
for matrix elements can be circumvented by employing
the scale and scheme independent effective Wilson coef-
ficients. The form factors at maximum recoil have been
calculated using the nonrelativistic quark model [7] and
the nearest pole dominance has been used to extrapolate
them to the required q2 point.

The paper is organized as follows. The phenomenol-
ogy of hyperon decays is presented in Sect. 2. In Sect.
3 we discuss the effective Hamiltonian together with the
quark level matrix elements and the numerical value of the
Wilson coefficients in the effective Hamiltonian approach.
Using the factorization ansatz we evaluate the matrix ele-
ments in the nonrelativistic quark model [7]. In Sect. 4 the
CP violating observables are discussed. Section 5 contains
our results and discussions.

2 Phenomenology of hyperon decays

The study of CP violation in strange hyperon decays is
extensively studied in [6], where the phenomenogy of hy-
peron decays are discussed in great detail. However for
the sake of completeness we shall present here the ba-
sic features of their nonleptonic decays. The most general
Lorentz-invariant amplitude for the decay Λb → pπ− can
be written as

iūp(pf )(a + bγ5)uΛb
(pi) (1)

The corresponding matrix element for Λ̄b → p̄π+ is then

iv̄p̄(pf )(−a∗ + b∗γ5)vΛ̄b
(pi) (2)

It is convenient to express the transition amplitude in
terms of S-wave (parity violating) and P-wave (parity con-
serving) amplitudes S and P as

S + Pσ · q̂ (3)
where q is the proton momentum in the rest frame of Λb

baryon and the amplitudes S and P are:

S = a

√
{(mΛb

+ mp)2 − m2
π}

16πm2
Λb

P = b

√
{(mΛb

− mp)2 − m2
π}

16πm2
Λb

(4)

The experimental observables are the total decay rate Γ
and the decay parameters α, β and γ which govern the
decay-angular distribution and the polarization of the final
baryon. The decay rate is given as

Γ = 2|q|{|S|2 + |P |2} (5)

and the asymmetry parameters are given as

α =
2Re(S∗P )

{|S|2 + |P |2}
β =

2Im(S∗P )
{|S|2 + |P |2}

α2 + β2 + γ2 = 1 (6)

The dominant term in the angular distribution is α hence
we concentrate ourselves only to the parameter α only.
Similar observables for the antihyperon decays are Γ̄ , ᾱ,
β̄ and γ̄ where Γ̄ , ᾱ are given as

Γ̄ = 2|q|{|S̄|2 + |P̄ |2}
ᾱ =

2Re(S̄∗P̄ )
{|S̄|2 + |P̄ |2} (7)

3 Transition amplitude
in the factorization approximation

The effective Hamiltonian Heff for the decay process Λb

→ pπ− is given as

Heff =
GF√

2

{
λu[c1(µ)Ou

1 (µ) + c2(µ)Ou
2 (µ)]

+(λu + λc)
10∑
i=3

ci(µ)Oi(µ)
}

+ h.c. , (8)

where λu = VubV
∗
ud and λc = VcbV

∗
cd and ci(µ) are the

Wilson coefficients evaluated at the renormalization scale
µ. The operators O1−10 are given as

Ou
1 = (ūb)V −A(d̄u)V −A ,

Ou
2 = (ūαbβ)V −A(d̄βuα)V −A ,

O3(5) = (d̄b)V −A

∑
q′

(q̄′q′)V −A(V +A) ,

O4(6) = (d̄αbβ)V −A

∑
q′

(q̄′
βq′

α)V −A(V +A) ,

O7(9) =
3
2
(d̄b)V −A

∑
q′

eq′(q̄′q′)V +A(V −A) ,

O8(10) =
3
2
(d̄αbβ)V −A

∑
q′

eq′(q̄′
βq′

α)V +A(V −A) , (9)

where O1,2 are the tree level current-current operators,
O3−6 are the QCD and O7−10 are the EW penguin opera-
tors. (q̄1q2)(V ±A) denote the usual (V ± A) currents. The
sum over q′ runs over the quark fields that are active at the
scale µ = O(mb) i.e. (q′ ∈ u, d, s, c, b). The Wilson coeffi-
cients depend (in general) in the renormalization scheme
and the scale µ at which they are evaluated. In the next
to leading order their values obtained in the naive dimen-
sional regularization (NDR) scheme at µ = mb(mb) as [8]

c1 = 1.082 c2 = −0.185 c3 = 0.014 c4 = −0.035
c5 = 0.009 c6 = −0.041 c7 = −0.002 α c8 = 0.054 α

c9 = −1.292 α c10 = 0.263 α . (10)

However the physical matrix elements 〈pπ|Heff |Λb〉 are
obviously independent of both scheme and the scale.
Hence the dependence in the Wilson coefficients must be
compensated by a comensurate calculation of the hadronic
matrix elements in a nonperturbative framework, such as



R. Mohanta: CP violation in Λb → pπ− decay 291

lattice QCD. Presently this is not a viable strategy as the
calculation of the matrix elements 〈πp|Oi|Λb〉 is beyond
the scope of the current lattice technology. However per-
turbation theory comes to (partial) rescue; with the help of
which one-loop matrix elements can be rewritten in terms
of the operators and the effective Wilson coefficients ceffi
which are scheme and scale independent:

〈dūu|Heff |b〉 =
∑
i,j

ceffi (µ)〈dūu|Oj |b〉tree . (11)

The effective Wilson coefficients ceffi (µ) may be expressed
as [9]

ceff1 |µ=mb
= c1(µ) +

αs

4π

(
γ(0)T ln

mb

µ
+ r̂T

)
1i

ci(µ) ,

ceff2 |µ=mb
= c2(µ) +

αs

4π

(
γ(0)T ln

mb

µ
+ r̂T

)
2i

ci(µ) ,

ceff3 |µ=mb
= c3(µ) +

αs

4π

(
γ(0)T ln

mb

µ
+ r̂T

)
3i

ci(µ)

− αs

24π
(Ct + Cp + Cg) ,

ceff4 |µ=mb
= c4(µ) +

αs

4π

(
γ(0)T ln

mb

µ
+ r̂T

)
4i

ci(µ)

+
αs

8π
(Ct + Cp + Cg) ,

ceff5 |µ=mb
= c5(µ) +

αs

4π

(
γ(0)T ln

mb

µ
+ r̂T

)
5i

ci(µ)

− αs

24π
(Ct + Cp + Cg) ,

ceff6 |µ=mb
= c6(µ) +

αs

4π

(
γ(0)T ln

mb

µ
+ r̂T

)
6i

ci(µ)

+
αs

8π
(Ct + Cp + Cg) ,

ceff7 |µ=mb
= c7(µ) +

αs

4π

(
γ(0)T ln

mb

µ
+ r̂T

)
7i

ci(µ)

+
α

8π
Ce ,

ceff8 |µ=mb
= c8(µ) +

αs

4π

(
γ(0)T ln

mb

µ
+ r̂T

)
8i

ci(µ) ,

ceff9 |µ=mb
= c9(µ) +

αs

4π

(
γ(0)T ln

mb

µ
+ r̂T

)
9i

ci(µ)

+
α

8π
Ce ,

ceff10 |µ=mb
= c10(µ) +

αs

4π

(
γ(0)T ln

mb

µ
+ r̂T

)
10i

ci(µ) .

(12)

where r̂T and γ(0)T are the transpose of the matrices r̂
and γ(0) arise from the vertex corrections to the operators
O1 − O10 derived in [10], which are explicitly given in [11]

The quantities Ct, Cp and Cg are arising from the
peguin type diagrams of the opearators O1,2, the peguin
type diagrams of the opearators O3−O6 and the tree level
diagrams of the dipole operator Og respectively which are
given in the NDR scheme (after MS renormalization) by

Ct = −
(

λu
λt

G̃(mu) +
λc
λt

G̃(mc)
)

c1

Cp = [G̃(md) + G̃(mb)]c3 +
∑

i=u,d,s,c,b

G̃(mi)(c4 + c6)

Cg = − 2mb√〈k2〉ceffg , ceffg = −1.043

Ce = −8
9

(
λu
λt

G̃(mu) +
λc
λt

G̃(mc)
)

(c1 + 3c2)

G̃(mq) =
2
3

− G(mq, k, µ) (13)

G(m, k, µ) = −4
∫ 1

0
dx x(1 − x) ln

(
m2 − k2x(1 − x)

µ2

)
,

(14)
It should be noted that the quantities Ct, Cp and Cg

depend on the CKM matrix elements, the quark masses,
the scale µ and k2, the momentum transferred by the vir-
tual particles apearing in the penguin diagrams. In the
factorization approximation there is no model indepen-
dent way to keep track of the k2 dependence; the actual
value of k2 is model dependent. From simple kinematics
of charmless nonleptonic B decays [12] one expects k2 to
be typically in the range

m2
b

4
≤ k2 ≤ m2

b

2
. (15)

Assuming that in the rest frame of the Λb baryon, the spec-
tator diquarks both in the initial and final baryon have
negligible momentum and the momentum shared equally
by between the two quarks of the pion, we have found k2 ≈
m2

b/2. For numerical calculation we have taken the CKM
matrix elements expressed in terms of the Wolfenstein
parameters with values A = 0.815, λ = sin θc=0.2205,
ρ = 0.175 and η = 0.37 [9]. Using the mass renormaliza-
tion equations with three loop β function, the values of
the current quark masses are evaluated at various energy
scales in [13]. Since the energy released in the decay mode
Λb → pπ− is of the order of mb, we take the current quark
mass values at scale µ ∼ mb from [13] as: mu(mb) = 3.2
MeV, md(mb) = 6.4 MeV, ms(mb) = 90 MeV, mc(mb)=
0.95 GeV and mb(mb)= 4.34 GeV. Thus we obtain the
values of the effective renormalization scheme and scale
independent Wilson coefficients for b → d transitions as:

ceff1 = 1.168 ceff2 = −0.365 ceff3 = 0.0224 + i0.0038

ceff4 = −(0.0455 + i0.0115) ceff5 = 0.0131 + i0.0038

ceff6 = −(0.0475 + i0.0115)

ceff7 /α = −(0.0294 + i0.0329) ceff8 /α = 0.055 α

ceff9 /α = −(1.426 + i0.0329) ceff10 /α = 0.48 . (16)

After obtaining the effective Wilson coefficients now we
want to calculate the matrix element 〈πp|Oi|Λb〉 where Oi

are the four quark current operators listed in (9), using
the factorization approximation. In this approximation,
the hadronic matrix elements of the four quark opera-
tors (d̄b)(V −A)(ūd)(V −A) split into the product of two ma-
trix elements, 〈π|(d̄u)(V −A)|0〉 and 〈p|(ūb)(V −A)|Λb〉 where



292 R. Mohanta: CP violation in Λb → pπ− decay

Fierz transformation has been used so that flavor quan-
tum numbers of the currents match with those of the
hadrons. Since Fierzing yield operators which are in the
color singlet-singlet and octet-octet forms, this procedure
results in general the matrix elements which have the right
flavor quantum numbers but involve both singlet-singlet
and octet-octet current operators. However there is no ex-
perimental information available for the octet-octet part.
So in the factorization approximation, one discards the
color octet-octet piece and compensates this by treating
Nc, the numbers of colors as a free parameter, and its
value is extracted from the data of two body nonleptonic
decays.

The matrix elements of the (V − A)(V + A) operators
i.e. (O6 & O8) can be calculated as follows. After Fierz
ordering and factorization they contribute as [14]

〈pπ|O6|Λb〉 = −2
∑
q

〈π|d̄(1 + γ5)q|0〉〈p|q̄(1 − γ5)b|Λb〉

(17)
Using the Dirac equation the matrix element can be
rewritten as

〈pπ|O6|Λb〉 =
[
R1〈p|Vµ|Λb〉 − R2〈p|Aµ|Λb〉

]
〈π|Aµ|0〉 ,

(18)
with

R1 =
2m2

π

(mb − mu)(md + mu)
,

R2 =
2m2

π

(mb + mu)(md + mu)
, (19)

where the quark masses are the current quark masses. The
same relation works for O8.

Thus under the factorization approximation the
baryon decay amplitude is governed by a decay constant
and baryonic transition form factors. The general expres-
sion for the baryon transition is given as

〈p(pf )|Vµ − Aµ|Λb(pi)〉
= ūp(pf )

{
f1(q2)γµ + if2(q2)σµνqν + f3(q2)qµ

−[g1(q2)γµ + ig2(q2)σµνqν + g3(q2)qµ]γ5

}
uΛb

(pi) , (20)

where q = pi − pf . In order to evaluate the form factors
at maximum momentum transfer, we have employed non-
relativistic quark model [7], where they are given as:

f1(q2
m)/Nfi = 1 − ∆m

2mi
+

∆m

4mimq

(
1 − Λb

2mf

)
×(mi + mf − η∆m)

− ∆m

8mimf

Λ̄

mQ
(mi + mf − η∆m)

f3(q2
m)/Nfi =

1
2mi

− 1
4mimf

(mi + mf − η∆m)

− Λ̄

8mimfmQ
[(mi + mf )η + ∆m]

g1(q2
m)/Nfi = η +

∆mΛ̄

4

(
1

mimq
− 1

mfmQ

)
η

g3(q2
m)/Nfi = − Λ̄

4

(
1

mimq
− 1

mfmQ

)
η (21)

where Λ̄ = mf − mq, ∆m = mi − mf (mi and mf are the
initial and final baryon masses), q2

m = ∆m2, η = 1, mQ

and mq are the constituent quark masses of the interacting
quarks of initial and final baryons with values mu=338
MeV and mb=5 GeV. Nfi is the flavour factor:

Nfi =flavor spin 〈p|b†
ubb|Λb〉flavor spin =

1√
2

(22)

Since the calculation of q2 dependence of form facors is be-
yond the scope of the nonrelativistic quark model we will
follow the conventional practice to assume a pole domi-
nance for the form factor q2 behaviour as

f(q2) =
f(0)

(1 − q2/m2
V )2

g(q2) =
g(0)

(1 − q2/m2
A)2

(23)

where mV (mA) is the pole mass of the vector (axial vec-
tor) meson with the same quantum number as the cur-
rent under consideration. The pole masses are taken as
mV = 5.32 GeV and mA = 5.71 GeV. Assuming a dipole
q2 behaviour for form factors, and taking the masses of
the baryons and pion from [15] we found

f1(m2
π) = 0.043 mif3(m2

π) = −0.009
g1(m2

π) = 0.092 mig3(m2
π) = −0.047 (24)

The matrix element 〈π|Aµ|0〉 is related to the pion decay
constant fπ as

〈π(q)|Aµ|0〉 = −ifπqµ (25)

Hence one obtains the transition amplitude for Λb → pπ−
as (where the factor GF /

√
2 is suppressed)

A(Λb → pπ−)

= ifπūp(pf )
[{

λu (a1 + a4 + a10 + (a6 + a8)R1)

+λc (a4 + a10 + (a6 + a8)R1)
} (

f1(m2
π)(mi − mf )

+ f3(m2
π)m2

π

)
+

{
λu (a1 + a4 + a10 + (a6 + a8)R2)

+λc (a4 + a10 + (a6 + a8)R2)
} (

g1(m2
π)(mi + mf )

− g3(m2
π)m2

π

)
γ5

]
uΛb

(pi) . (26)

The coefficients a1, a2 · · · a10 are combinations of the ef-
fective Wilson coefficients given as

a2i−1 = ceff2i−1 +
1

(Neff
c )2i−1

ceff2i

a2i = ceff2i +
1

(Neff
c )2i

ceff2i−1 i = 1, 2 · · · 5 , (27)
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acp =
2Im(λuλ∗

c) (Im(SuS∗
c ) + Im(PuP ∗

c ))
|λu|2(|Su|2 + |Pu|2) + |λc|2(|Sc|2 + |Pc|2) + 2Re(λuλ∗

c) (Re(SuS∗
c ) + Re(PuP ∗

c ))

=
−2 sin γ

(|SuSc| sin(δS
u − δS

c ) + |PuPc| sin(δP
u − δP

c )
)

|λu
λc

|(|Su|2 + |Pu|2) + | λc
λu

|(|Sc|2 + |Pc|2) + 2 cos γ (|SuSc| cos(δS
u − δS

c ) + |PuPc| cos(δP
u − δP

c ))
, (35)

where Neff
c is the effective no. of colors treated as free

parameter in order to model the nonfactorizable contribu-
tions to the matrix elements and its value can be extracted
from the two body nonleptonic B decays. Naive factoriza-
tion implies Nc = 3. A recent analysis of B → Dπ data
gives Neff

c ∼ 2 [16]. On the other hand Mannel et al [17]
have used Neff

c = ∞ to study the nonleptonic decays of
Λb baryon. So here we have taken three sets of values i.e.,
2, 3 and ∞ for the effective no. of colors.

Using (4) and (20)-(26) we obtain the parity violating
(S) and parity conserving (P ) amplitudes (in the unit of
fπGF /

√
2 × 10−3) for three different sets of effective no.

of colors as

S = λu(30.215 − 0.624i) − λc(2.453 + 0.624i)
P = λu(64.662 + 1.334i) − λc(5.245 − 1.334i) ,

(for Neff
c = 2) (28)

S = λu(32.1 − 0.66i) − λc(2.581 + 0.66i)
P = λu(68.7 − 1.411i) − λc(5.52 + 1.411i)

(for Neff
c = 3) (29)

S = λu(35.871 − 0.738i) − λc(2.845 + 0.738i)
P = λu(76.769 − 1.578i) − λc(6.084 + 1.578i) ,

(for Neff
c = ∞) (30)

4 CP violating asymmetry

For Λb → pπ− decay the CP violating rate asymmetry
in partial decay rate and α (Asymmetry parameter) are
defined as follows,

acp =
Γ (Λb → pπ−) − Γ (Λ̄b → p̄π+)
Γ (Λb → pπ−) + Γ (Λ̄b → p̄π+)

, (31)

A(α) =
α + ᾱ

α − ᾱ
. (32)

As these decays are all self tagging the measurement of
these CP violating asymmetry is essentially a counting
experiment in well defined final states. Their rate asym-
metries require both weak and strong phase differences in
interfereing amplitudes. The weak phase difference arises
from the superposition of amplitudes from various tree
(current-current) and penguin diagrams. The strong phase
which are needed to obtain nonzero values for acp are gen-
erated by final state interactions.

Without loss of generality, we can write the parity vi-
olating/conserving transition amplitudes for the hyperon
decay as

S = λu|Su|eiδsu + λc|Sc|eiδsc

P = λu|Pu|eiδpu + λc|Pc|eiδpc (33)

Table 1. Branching ratio and CP violating parameters for the
decay Λb → pπ− decay mode

Neff
c BR (Theory) BR Expt. [15] acp A(α)

2 0.83 × 10−6 −8.3% −2.4 × 10−5

3 0.93 × 10−6 < 5 × 10−5 −8.3% −2.3 × 10−5

∞ 1.16 × 10−6 −8.3% −1.5 × 10−5

where λq = VqbV
∗
qd, (S/P )u and (S/P )c denote the con-

tribution from hadronic matrix elements proportional to
the product of CKM matrix elements λu and λc respec-
tively for (S/P ) waves. The corresponding strong phases
are denoted by δ

(S/P )
u and δ

(S/P )
c respectively.The corre-

sponding quantities for the antihyperon decay are given
as

S̄ = − (
λ∗
u|Su|eiδsu + λ∗

c |Sc|eiδsc
)

P̄ = λ∗
u|Pu|eiδpu + λ∗

c |Pc|eiδpc (34)

Thus the CP violating rate asymmetry is given as, (see
(35) on top of the page) where the weak phases entering
in the b → d transition is equal to −γ, as we are using
Wolfenstein approximation in which λc has no weak phase
and the phase of λu is −γ which is obtained from the
relation tan γ =

(
η
ρ

)
. The strong phases (δSu − δSc ) are

obtained from

cos(δSu − δSc ) =
1

|SuSc| (ReSu ReSc + ImSu ImSc)

sin(δSu − δSc ) =
1

|SuSc| (ImSu ReSc − ImSc ReSu) (36)

Similar relations hold for (δPu − δPc ) with the amplitude S
is replaced by P .

5 Results and discussions

In this section we have estimated the branching ratio and
the CP violating asymmetries for the decay mode Λb →
pπ−. The magnitude of the parity-conserving (P wave)
and parity violating (S-wave) amplitudes are given in
(28)–(30) for three different sets of effective no. of colors.
Using the pion decay constant fπ to be 130.7 MeV and
GF from [15] we have obtained the branching ratio with
(5) as given in Table 1. It is seen that the branching ra-
tio is maximum for Neff

c = ∞, but its value for all three
sets of Neff

c lies below the present experimental upper
limt BR(Λb → pπ−) < 5 × 10−5 [15]. The CP asymmetry
acp is found to be ∼ −8% in all the three cases and the
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CP violating parameter A(α) obtained using (6), (7) and
(32) increases with the effective no. of colors as seen from
Table 1.

In this work we have studied the direct CP violation
in Λb → pπ− decay mode. Using the next-to-leading or-
der QCD corrected effective Hamiltonian, we have ob-
tained the branching ratio and CP asymmetries within
the framework of generalized factorization. The nonfac-
torizable contributions are parametrized in terms of the
effective no. of colors Neff

c . So in addition to the naive
factorization approach (Neff

c = 3), here we have taken
two more values for Neff

c i.e., Neff
c = 2 and ∞. The bary-

onic form factors at maximum momentum transfer (q2
m)

are evaluated using the nonrelativistic quark model and
the extrapolation of the form factors from q2

m to the re-
quired q2 value is done by assuming the pole dominance.
The weak phases in our analysis are obtained from the
CKM matrix elements whereas the strong phases are ob-
tained from the absorptive part of the penguin diagrams.
The obtained branching ratio lies within the present ex-
perimental upper limit and the CP violating observables
are found to be acp ∼ −8% and A(α) � 2 × 10−5. In the
future there will be more data on the heavy Λb baryon
from different experimental groups, hence it will be very
interesting to look for such CP violating asymmetries in
the experiments in order to get a deeper understanding of
the mechanism of CP violation. Furthermore, the study
of CP violation in Λb decays may provide insight into the
baryon asymmetry phenomena required for baryogenesis.
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